

SYLLABUS

Exergy Analysis

200 HOURS

SUBJECT/LEVEL

Energy engineering graduate level.

LEARNING OUTCOMES

After completion of the course you will be able to:

- Analyze real energy and material conversion systems from an exergy point of view
- Reflect on sustainable use of physical resources

COURSE CONTENTS

The course is divided into three parts:

Part 1. Exergy Analysis Fundamentals, 70 hrs: Exergy concepts and methods, Life Cycle Analysis, Energy Systems, Life Cycle Exergy Analysis (LCEA), sustainable resource use.

Part 2. Exergy Calculations, 60 hrs: LCEA of different systems and process.

Part 3. Individual project report, 70 hrs: LCEA of real systems.

RECOMMENDED REQUIREMENTS

Knowledge of thermodynamics or exergetics.

TYPE OF TEACHING

The course is given as an Internet based academic course in English. Exercises and assignments are submitted on line and participants get personal feedback from the teacher. A forum for discussion is also available.

EXAMINATION AND GRADES

Examination by hand in exercises. Grades will be given according to the scale A to F, where A is highest and F is failed.

LITERATURE

Cutler J. Cleveland, *Net Energy From the Extraction of Oil and Gas in the United States* 17 p. http://www.bu.edu/cees/people/faculty/cutler/articles/Net_%20Energy_US_Oil_gas.pdf

Gong, M. and G. Wall, *On Exergy and Sustainable Development, Part II: Indicators and Methods* (2001) 17 p. http://www.exergy.se/ftp/gw2exij.pdf.

Muilerman and Blonk, *Towards a sustainable use of natural resources* (2001) 18 p. http://ec.europa.eu/environ-ment/enveco/waste/pdf/muilerman.pdf.

The Eco-indicator 99 A damage oriented method for Life Cycle Impact Assessment (2000) 144 p. http://www.pre.nl/download/E199_methodology_v3.pdf.

The Exergoecological Portal, http://www.exergoecology.com/excalc/index http:

Zvolinschi, Anita. *On exergy analysis and entropy production minimisation in industrial ecology*, (2006) 216 p. PhD Theses, NTNU, http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:122541.

Wall, G. and M. Gong, *On Exergy and Sustainable Development, Part I: Conditions and Concepts* (2001) 18 p. http://www.exergy.se/ftp/wg1exij.pdf.

Wall, G., *Exergy Flows in Industrial Processes*, Energy, Vol. 13, No. 2, pp. 197-208 (1988) http://www.exergy.se/ftp/paper3.pdf, http://www.exergy.se/ftp/paper3fig52.pdf, and http://www.exergy.se/ftp/paper3fig62.pdf.

Wall, G., Exergetics (2009) 151 p. http://www.exergy.se/ftp/exergetics.pdf.

Göran Wall August 30, 2010