
THERMOECONOMIC OPTIMIZATION OF‘ A HEAT 
PUMP SYSTEM 

G. WAI.1. 

Physical Resource Theory Group, Chalmers University ~)CTcchnology and Untvcrsity of G(itcbr)rg. 
s-412 96 Gdteborg. Swcdcn 

Abstract-We present the application of thermocconomics to the optlmlratwn of a single-stage 
heat-pump cycle. The method is well suited for application to thcrmodynamlc proccsscs and yicldb 
exergy losses. The marginal cost of an arbitrary variable can also be calculated. The cllicienc~cs 01 
Ihe compressor. condenser, evaporator, and electric motor arc chosen a\ the decision variables 
which are to be optimized. Parameters such as the price of electricity and the tcmpcraturc of the 
delivered heat may vary among optimizations. and results arc presented for dlffcrcnt parameter 
values. 

Contemporary technical systems are often constructed without detailed prior analysis of 
the effects of different potential solutions for a given system in terms of cost. Instead, 

constructions are often based on experience, educated guesswork and personal evaluations. 
Sometimes energy reallocations are made, for example when the investment budget is 

based on calculation of energy (or, better, cxergy) losses in each zone of the system. 

irrespective of the method used, the maximum cost permitted for each zone is obtained. 
and the market prices then determine to what extent efficient components can be afforded. 
Such systems always cost at least as much as and often more than they would if 
t hermoeconomic optimization were used. 

Tribus and El-Sayed’,2 developed the concept ofthermocconomics. in which the objective 
function is optimized, subject to given economic and technical constraints. The purpose of 

thermoeconomics is to improve analyses of systems by introducing ways of concurrently 

suggesting improvements. 
The result of an insufficient analysis is that we never know the best solution or how to 

find it. By optimizing the total system in operation, WC always find the best system within 

the given conditions. We can also calculate the marginal costs of the exergy losses in each 
component. These values are very important in the selection of research and development 

measures, or in the improvement of an existing system. 
The system is described in relation to the physical (prcssurc p,,. temperature 7;,. and 

chemical potentials of the appropriate substances YPI,.J and economic environments (prices 
of goods ci and prices of capital or interest rates oi). These 2 cnvironmcnts are interrelated 
by cost relations for physical quantities. 

Briefly, the method involves the following steps: (I) a concise description of the system 

under study; (2) definition of system boundaries, zones, components. etc. (a detailed flow 
chart or a draft of the process); (3) definitions of the physical cnvironmcnt or. alternatively. 
of the local physical environment; (4) declarations of the sources of the thermophysical 
data; (5) development of a computational algorithm with inputs and outputs clearly 

identified, based on mass and energy balances for the system and a complete thermodynamic 
description, within the given conditions; (6) definitions of the cost equations and the 
economic objective function; (7) determinations of the exergy flows and sources of entropy. 
i.e. exergy sinks, in the system (related to the in and outflows of exergy); (8) determination 
of the monetary flows in the process; (9) suggestions of possible improvements of the 
configuration of the system and adjustments of associated relations (5); (IO) optimizations 
of the objective of the process, i.e. the cost; (I I) carrying out of a sensitivity study; (I?) 
suggested improvements of the design and areas for further research and development. 
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Fig. 1. The system in 2 environments. 

The new element in this working scheme is introduction of the environment and its 
effects on the system. This makes it possible to use the exergy concept to calculate the 
amount of work lost due to irreversibilities in the system. Thermoeconomics find the 
optimum economic design within physical feasibility. All costs are based on life-time costs, 
which may also include maintenance costs, etc. We might not be able to realize this 
optimum solution for an existing system, but we can learn how to improve it. The method 
also provides new insights, which often lead to new, unexpected improvements. Interest in 
thermoeconomics from industrial management is increasing today.3 

Thermodynamic systems can be completely described using equations of mass balance 
(for each substance), energy and entropy, in conjunction with thermophysical property 
relations and/or equations of state, equipment performance characteristics, thermokinetic 
or rate equations, and boundary/initial conditions. Given an adequate description of the 
process, it can be optimized using any current technique. The exergy flow gives a unique 
description of the potentials for improving efficiency. 

The variables describing the system can usually be divided into basic state variables, 
variable decision variables, and fixed decision variables.2 These variables are all interrelated 
by the objective function and the equations of constraints. We might substitute the 
constraint equations into the objective function, leaving only the independent variables, i.e. 
the variable decision variables, to be optimized. However, this is not always mathematically 
desirable. Using Lagrange’s method, we can maintain the fixed or dependent variables in 
the optimization. Their shadow, i.e. marginal, prices are then given by the Lagrange 
multipliers. 

The application of Lagrange’s method to large scale systems is well known and 
widespread.4 Methods are also available whereby a complex thermal system is decomposed 
into its component parts, each component buying and selling exergy with other com- 
ponents.5 However, this approach requires that the problem is described in terms of exergy 
coordinates, i.e. the constraint equations representing the internal economic transactions 
(supply and demand equations) must be explicitly given in terms of exergy flows. The 
benefit of such a transformation is that the Lagrange multipliers represent prices describing 
the internal sales and purchases of exergy. These prices can be used in turn to show the 
economic trade-offs between capital investment costs and exergy losses for each component 
of the system. 

In order to obtain the exergy balance equations, all the relevant thermodynamic 
constraints must be incorporated. Usually there is no general way to find these constraint 
equations. All state variables (temperature, pressure, mass flows, etc.) must also be 
transformed into exergy variables, which may be problematical. Usually this transformation 
ends up in a number of non-linear equations which must be solved to get the optimum 
values for the decision variables. We avoid these problems by using numerical treatment. 

When constructing a system, attempts should be made to attain the highest possible 



Optimization of a heat pump system 959 

technical efficiency at the lowest cost within the existing technical, economical and legal 

constraints. (Sometimes we must also consider ethical, ecological or social consequences.) 

The analysis should also include different operating points (pressures, temperatures, etc.), 

configurations (components, flow charts, etc.), purposes (dual purpose use of waste streams, 
etc.), and environments (global or local environment, new prices, etc.). As mentioned above. 
new arcas for research and development should also be identified. 

Computer programs and suitable strategies allow for examination of a large number 01 
solutions, and determination of competitive solutions. A good strategy should include the 

use of new components and a suitable level of accuracy for available and assumed quantities 
reprcscnting different properties, performances and costs. The purpose of this study is to 
dcvclop such a strategy from a fundamental theoretical basis and to formalize what many 

people regard as common sense. The point of departure is in regarding the system a\ 
surrounded by a physical and economic environment, see Fig. I. 

With regard to the physical environment, the energy and mass ilows are evaluated in 
physical terms, i.c. in terms of exergy per unit time. The difference between all incoming 

cxergy flows and all outgoing exergy flows must be minimized and the efficiency must bc 
maximized. In the economic environment all energy and mass flows are evaluated instead 

in terms of economic value or costs. The main function is now the cost per unit time, (i.c. 
operation and capital costs minus income), which should be minimal. Thermoeconomic 

optimization is economic optimization in conjunction with thorough thermodynamic 
description of the system. 

EXERGY 

The exergy losses due to irreversibilities in a stationary state can be determined for each 

Lone, a single component or a number of components, by regarding in and outflows of 

cxergy. The cxcrgy content E of a flow is 

where H is the enthalpy, To the absolute temperature of the environment, S the entropy, 

and K .. the chemical potential of substance c of quantity II,.. The exergy loss can be 
dctcrmined for each zone. For the system, we obtain a sum for all zones, which gives the 

total rate of exergy loss. This may also be written as the product of the environment 
temperature and total rate of entropy production i.e. TOAS”“. 

COSTS OF EXERGY LOSSES 

There are 2 main reasons for placing a price on exergy losses, irrespective of whether 
the purpose is physical or economic optimization. The first is to obtain a description of 
how the variable mass and energy flows in the objective function are distributed over the 
process and the second is to find a redistribution that fulfils the objectives. This corresponds 
to 2 kinds of analysis: thermorconomic accauzting with the use of direct prices which allows 
comparison between zones and their costs, disregarding other parts of the system, and 
thermoec,orrttn7;(. optimization using differential prices, which allows comparison between 

the local and global responses of the system to a particular change of state. This leads to 
a sensitivity analysis and an optimization of the defined objective function. 

The differential prices indicating the direction of improving the objective function are 
marginal prices and shadow prices. A marginal price indicates the change of the objective 
function at a unit change of a variable decision variable. The shadow price indicates the 
corresponding direction for the other variables. Marginal prices of exergy can then be 
calculated using the chain rule of derivation. 



960 G. WALL 

EFFICIENCY AND COST OPTIMIZATION 

The calculation of exergy flows and their costs requires a thermodynamic and economic 
description of the system.? A suitable level of description, when comparing alternative 

solutions, is the level at which efficiencies and costs for each subsystem are measured (as 
part of the system) in common quantities. A more detailed description can thus be made 
by dividing the subsystem into even smaller parts. 

Important relations for describing the subsystems are equations for mass, energy, 
performances and costs as functions of performance. Cost relations as functions of capacity 
parameters such as areas, mass flows and powers are suitable in a preliminary analysis6 
These relations may later be rewritten to include other parameters such as temperatures, 

pressures or efficiencies. 

THERMOECONOMIC ACCOUNTING 

This method is one based on the exergy flows in the process, by which a price is put on 

the exergy. The exergy inflows are shared between useful outflows, wasted outflows and 
exergy losses. Thermoeconomic accounting simply means determining the exergy flows 
and assigning values to the exergy flows and losses. When there are various in and outflows 
the prices may vary. If the price per exergy unit does not vary too greatly we can define 

an “average price”. This method allows comparison of the economic cost of a zone with 
the cost of its exergy loss. 

Thermoeconomic accounting does not include consideration of the system effects. It 

does not describe how the capital investments in one part on the system affect exergy 

losses in other parts of the system. In the thermoeconomic accounting method the exergy 
losses are only figures not functions. However, this simple type of analysis sometimes gives 

ideas for unusual improvements. 

THERMOECONOMIC OPTIMIZATION 

Direct prices are not affected when a change in one part of the system affects other 
parts. Marginal and shadow prices are affected, but they are difficult to determine. 

According to the system equations they are dependent on the first derivatives of the 
parameters in question and not only on their absolute values. 

The objective function Q0 must be defined as a function of dependent state variables or 

state parameters {xj},~ variable decision variables or just decision variables { yk}, and fixed 
decision variables or decision parameters {z~}, i.e. 

wherej= 1,2 ,..., n,k= 1,2 ,..., m,andl= 1,2 ,..., r. 

The equations of state may be divided into 2 groups. One group fixes the dependent 
variables {xj}, appearing in the objective function Q,, and the constraints, {~j = 0}, in 

Lagrange’s method. The other group is related to the Lagrange multipliers {~j}. The 
equations of state are written as 

where Qj is the function used in Lagrange’s method since it must be zero at optimum, i.e. 
when xj = @? Qj gives the relations between the state variable in question xj and the other 

t Second law considerations arc not needed in the optimization. The exergy concept is only used to discover 
possible future improvements beyond the economic improvements. 

$ Here, we let x, denote the jth state parameter and write {xi} in the abbreviated forms x,,.q,. .,x,, , x,. 
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state variables {x~}~+~ and the decision variables {yk} and (zr}. With these definitions, the 

equations of state become 

@j((xi>> { Yk}, {zII) = O, j= 1,2 ,..., n. (4) 

The problem can now be formulated as follows: 

minimize@,, = OO(jxi}, { ykj, (z,}), (3 

subject to @&xi>, { ~kf, (~1)) = 0, j== 1,2 ).... n. (6) 

With the defined objective function and equations of state, the Lagrangian becomes 

L = @, + C i.,Qj. (7) 

According to Lagrange’s method, 

aL/aXi = 0, i= 1,2 ,...) n. (8) 

This procedure gives n equations, which are linearly dependent through the unknown 
Lagrange multipliers {A,}, which may be regarded as shadow prices.’ 

When the objective function and the equations of state are not too complicated, the 

optimum is given by 

dL/Gy, = 0, k = I,2 ,..., m. (9) 

The optimum solution is found by solving these equations for the variable decision variables 

IYk). 
In real world applications, it is often better to define a marginal price Ok, related to each 

variable decision variable y,, i.e. 

k = 1,2 ,..., M. (10) 

The physical interpretation of these prices is that they constitute the gradients for each 

variable decision variable, Y,, i.e. they give the direction for improving the system. 
Equation (8) represents n linear equations for the unknown Lagrange multipliers and 

Eq. (9) represents m equations with the variable decision variables as unknowns. In many 

real world applications of this method the n + m equations defined by Eqs (8) and (9) are 
strongly non-linear and difficult to solve. Numerical treatment is therefore often necessary. 
Numerical values must then be calculated for the shadow prices {~~j} for every set of the 
variable decision variables j yk). These shadow prices are then inserted into Eq. (10) to 
determine the marginal prices {ok}. The marginal prices represent the derivatives of the 
objective function Q0 in the state i. From the values of the marginal prices we can now 
indicate the direction for improving the system. A new state, i + 1, is chosen in this 
direction according to 

Yk.i+ I = Yk,i I!I AYk (11) 

where Ay, is a predefined step. 
When the marginal price f3k,i is negative then the derivative of the objective function is 
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negative. If we want to minimize the objective function, we must increase the variable 
decision variable y,,i to reach the optimum. If the marginal price is positive we must 
decrease the variable decision variable. 

SYSTEM MODEL 

Heat pump systems offer much more efficient means of producing heat than traditional 
combustion or electrical short circuit technologies. Heat pump systems are therefore 
becoming more common as the prices of fuels and electricity increase. The configuration 
of the system is defined in Fig. 2. It consists of a compressor, a condenser, an expansion 
valve, an evaporator, and an electric motor. 

Fig. 2. Heat pump system with 5 components and 11 flows. 

The refrigerant is superheated after passing through the evaporator, step l-2, and 
supercooled after passing through the condenser, step 5-6. The actual state of the refrigerant 
after the compression, 3, differs from that of a reversible process, 3,,,, due to the limited 
efficiency of the compressor. The heat produced from the system is h3 - h,, the heat input 
is h2 - h7, and the work supplied to the compressor is h3 - h2. The electricity input 
required to operate the syste’m becomes (ha - h,)/qs, where qS is the efficiency of the 
electric motor. 

Variable decision 
evaporator, and the 

variables are the efficiencies of the compressor, the condenser, the 
electric motor. These are defined as follows 

rll = (hs.rev - hJ(h3 - W> (12) 

qz = (Ts - GMT4 - Ts), (13) 

t/4 = vl, - ~IOwl - To) (14) 

‘15 = m,(h, - Wf’ (1% 

where m, is the mass flow of the refrigerant, and P is the electric power. 
The system is completely defined apart from the variable decision variagbles { yk}, each 

set of which determines a state of the system. The exergy flows and exergy losses are also 
determined for each component. 

The objective is to minimize the cost for a given amount of produced heat. The cost 
includes both the operating (electricity) cost and the capital cost. The operating cost 
increases if the investments decrease and vice versa. The income from the product (heat) 
and a given required value of the profit sets an upper limit for the total cost of the system. 
The problem is to split this cost between the operating cost and the capital cost for each 
component. (The costs for parts not affected by alternative constructions of the system, 
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such as pipes connecting the components, are just added as constants and have no effect 
on the optimization.) The costs, C, for each of the 5 components will now be given. 

Compressor Cl = ~lklCV2/(~.9 - rll)l(~jl~,)Cln(p3/p2)1 (16) 

where k, is the cost per volume flow, k’,, p3/pz is the pressure ratio over the compressor, 
and q1 is the enthalpy efficiency. 

Condenser (17) 

where k, is the cost per mass flow of water, mwh, on the hot side; q2 is the temperature 
efficiency, and NTUz is the number of heat transfer units. 

Expansion Value CJ = a3k3m,, (181 

where k3 is the cost per mass flow of the refrigerant. 

Eoaporator (19) 

where k,, q4 and NTU4 are anlogous to the condenser above and mwr is the mass flow of 
water on the cold side. 

Electric Motor Cs = a,k,Pv,(l - r/s), GO) 

where k, is the cost per unit power and qs is the efficiency. Furthermore al-a5 are annuity 
factors of the different capital investments defined as 

a, = r[ 1 - (1 + r)-“I], (21) 

where r is the interest rate and ni is the depreciation time for component i. The depreciation 
time may vary for each component due to variations in economic lifetime and maintenance 
costs such as renovations, etc. 

Figure 3 shows the investment costs as a function of the efficiencies. The values of the 
fixed decision variables are set, for intance as follows: heat produced 6500 W (energy- 
power), operation time/yr 5000 hr, price of electricity 0.25 SEK/kWh, and temperature of 
the produced heat (T’.) 60°C. 

The investment costs are depreciated according to the annuity method, which gives a 
cost per unit time for every component. The total cost per unit time Q0 (= objective 
function) is the sum of these costs and the cost of the electricity used, E,,, i.e. 

-+t-++w --t-t f-e- .- I 

I,/) -I -s /,I -< _ 

Fig. 3. Costs of investments as a function of the efficiencies 
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@O = i ci + rPelEel, (22) 
i=l 

where t is the operating time per unit time and pel is the price of electricity. 
This optimization problem is too complicated to be solved by Lagrange’s method. 

Instead, the optimization is achieved by calculating the value of the objective function @,, 
and the marginal costs {0,> for every set of the variable decision variables {yk} according 
to 

4 = A@olAy,, k= 1,2 ,..., 4. (23) 

From these values a new set of variable decision variables { yk} is determined by using 
the Newton-Raphson method.* Thus the system moves towards the nearest minimum 
from the given start values. However, the problem is strongly non-linear which means that 
there is no general method for finding the global minimum. Instead common sense and 
insight into how the system works must be used to determine the value of a solution. 

A computer program has been developed for finding the optimum system. The program 
begins by calculating the thermodynamic data for the assumed refrigerant R12. (Other 
refrigerants may also be used.) These calculations are based on similar computer-based 
calculations by Reynolds.’ The equations of state for the system are formulated so as to 
avoid iterations. The actual minimizing procedure is carried out with a small number of 
iterations. When the sum of the marginal prices is less than a predefined value the 
optimization is completed. 

Let us assume a system with the value 0.7t for all efficiencies, the variable decision 
variables, which are to be optimized. The calculated total cost then becomes SEK 4221/yr 
of which SEK 3617/yr relate to electricity. The optimization gives the following efficiency 
values: compressor 0.80, condenser 0.83, evaporator 0.73 and electric motor 0.91, the total 
cost now amounting to SEK 3388/yr of which SEK 2416/yr is for the electricity. By 
increasing the investments from SEK 604/yr to SEK 972/yr, the total cost of the system 
becomes SEK 833/yr less than for the assumed system, see Fig. 4. At the same time the 
exergy losses decrease from 1933 W to 979 W, i.e. 954 W! From Fig. 5 we see that it is 
the improvement of the electric motor that gives the largest single exergy saving. The 
optimization saves both costs and exergy. 

The expansion valve accounts for the largest exergy loss in the optimum system, which 
justifies investment in research and development to improve it.” 

The result indicates the electric motor to be the most critical component to improve. 
The electric motor is assumed to cost approximately 3 times as much at 91% efficiency 
than at 70% efficiency, which must be regarded as realistic. (It may even cost up to 9 times 
as much and still be competitive with the assumed system.) 

co\t 
5000 (SEKiyear) 

0 
Assumed Optimum 

system \y\tWl 

0 Electricity 

0 Elecuic motor 

q Evaporator 

q Condenser 

q Compressor 

I Expansion valve 

Fig. 4. Costs for the assumed and the optimum systems. 

tThese values correspond to real values of a system of this size. 
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Fig. 5. Exergy losses for the assumed and the optimum systems. 

Fig. 6. Costs as a function of the price of electricity. 

The dependence on or sensitivity to the fixed decision variables (price of electricity and 
temperature of the produced heat) has also been studied. Figure 6 shows the relationship 
between the costs and the price of electricity, when this varies between SEK 0.15 and 
0.6/kWh. The total cost then increases from SEK 2073/yr to SEK 5522/yr at SEK 0.6/kWh. 
This can be seen in relation to the fact that if the optimum system at SEK O.lS/kWh had 
been used at SEK 0.6/kWh, then the total cost would be SEK 5947, i.e. an increase in the 
cost of SEK 425/yr. (For the assumed system the total cost would instead by SEK 9284, 
i.e. a cost increase of SEK 3762/yr.) Figure 7 shows more clearly the relationship between 
component costs and the price of electricity. All components should become more efficient 
(and therefore more expensive) when the price of electricity increases. This might have 
been anticipated, but the exact inter-relations could not have been hypothesized. 

When the temperature of the condenser, i.e. the temperature of the produced heat, is 
changed interesting things occur (Figs 8 and 9). The total cost doubles from 2336 at 40°C 
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to SEK 4680/yr at 75°C. The heat produced in energy per time units is the same, i.e. 
6500 W, but in exergy per time units it changes from 434 to 713 W which better explains 
the increased cost. When the temperature increases from 40 to 75°C the total system, but 
not necessarily each component, must be more efficient, see Fig. 9. Within a total increase 
of component costs and efficiencies, it is more economical to choose a less expensive 
evaporator. The explanation is simply that investments in other parts of the system pay 
off better. 

i, /I I,, 

I 
c,,\; 

h kL1.11, 
~i’lll 

Fig. 8. Costs as a function of the temperature of the produced heat. 

1 I 1, I / 

‘li li ill ii 00 iii 71, ‘i 

Fig. 9. Component costs as a function of the temperature of the produced heat. 

Similarly, all other relations may be described using the computer program for the 
system. The program can easily be rewritten for other refrigerants or cost relations. The 
purpose of this study is merely to show the gain achieved by applying the method of 
thermoeconomics to a heat pump process. The exact numerical results for describing 
thermoeconomics as a method for improving technical processes have therefore been 
neglected. 

Thermoeconomics can never replace long experience and high technical and economic 
competence, but it might be an important complementary tool. 

Acknowledgements-This work was supported by an Operating Grant from the National Swedish Board for 
Technical Development, for which support the writer is most grateful. I thank M. Palmblad for helping me with 
the computer program and reading the manuscript at a very preliminary stage. I also thank K. E. Eriksson and 
S. Karlsson for reading the manuscript. 

Note-All computer programs are available upon request. 



Optimization of a heat pump system 067 

REFERENCES 

I. Y. M. El-Sayed and M. Tribus. .4 Spec$c Stratqy for the fmpro~emenr of Pr~~c~~~s ticonomk\. Center for 

Advanced Engineering Study, M.I.T., Cambridge, Mass., U.S.A. (IYXZ). 
2. Y. M. El-Sayed and M. Tribus. Strategic use of thermoeconomics for systems improvement. Effic~icwc~ untl 

Cosring. (Edited by R. A. Gaggioli), ACS Symposium series No. 235 (1983). 
3. A. Rcis, I. Smith, K. Stephan and J. L. Pcubc. Energy economics and management in industry. t’rtw. I:ur. 

(‘on,y.. Algarve, Portugal, 2 5 April 19X4, Pergamon Press (19X5). 
3. R. M. Garccau and W. J. Wepfer. Thermoeconomic optimization of a ranklnc cycle cogcncratlon system. 

Ilfi<~ic~nc~, und Costing. (Edited by R. A. Caggioli). ACS Symposium scria No. 235 (10X3). 
5. Y. M. El-Sayed and R. B. Evans. J. Engng Power 27, (January. 1970). 
6. I(. K. Humphrcys and S. Katell. Busic Cost En,@wrin,q. Marcel Dekkcr. New York (19X1 1. 
7. k.. M. El-Sayed and M. Tribus. The strategic use of thermoeconomic analqsi\ for process improvement 

Prerented at the A.1.Ch.E. Meeting, Detroit (August. I981 1. 
X. R. 1,. Johnston. Numc~ricul Mrrhods: (I Sofiwurr Approcrc,h. Wiley, New York (IYX2). 
0. W. C‘. Reynolds. Thermodynamic properties in SI Graphs. Tables and Computational Equations for 40 

Substances. Dcpartmcnt of Mechanical Engineering, Stanford Univ.. Calif., I:.S.A. (1979). 
IO. I:. Granryd. Research project no X0-4062 supported by the National Swedish Board for Tcchnlcal 

Dccelopment. Box 437 00. S- 100 72 Stockholm. Sweden ( 1985). 


